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This paper presents a numerical simulation of the magnetohydrodynamic (MHD)
liquid metal flow around a square cylinder placed in a rectangular duct. In the
hydrodynamic case, for a certain parameter range the well-known Kármán vortex
street with three-dimensional flow patterns is observed, similar to the flow around
a circular cylinder. In this study a uniform magnetic field aligned with the cylinder
is applied and its influence on the formation and downstream transport of vortices
is investigated. The relevant key parameters for the MHD flow are the Hartmann
number M, the interaction parameter N and the hydrodynamic Reynolds number, all
based on the side length of the cylinder. The Hartmann number M was varied in the
range 0 6M 6 85 and the interaction parameter N in the range 0 6 N 6 36. Results
are presented for two fixed Reynolds numbers Re = 200 and Re = 250. The magnetic
Reynolds number is assumed to be very small. The results of the numerical simulation
are compared with known experimental and theoretical results. The hydrodynamic
simulation shows characteristic intermittent pulsations of the drag and lift force on
the cylinder. At Re = 200 a mix of secondary spanwise three-dimensional instabilities
(A and B mode, rib vortices) could be observed. The spanwise wavelength of the
rib vortices was found to be about 2–3 cylinder side lengths in the near wake. At
Re = 250 the flow appears more organized showing a regular B mode pattern and
a spanwise wavelength of about 1 cylinder side length. With an applied magnetic
field a quasi-two-dimensional flow can be obtained at low N ≈ 1 due to the strong
non-isotropic character of the electromagnetic forces. The remaining vortices have
their axes aligned with the magnetic field. With increasing magnetic fields these
vortices are further damped due to Hartmann braking. The result that the ‘quasi-two-
dimensional’ vortices have a curvature in the direction of the magnetic field can be
explained by means of an asymptotic analysis of the governing equations. With very
high magnetic fields the time-dependent vortex shedding can be almost completely
suppressed. By three-dimensional visualization it was possible to show characteristic
paths of the electric current for this kind of flow, explaining the action of the Lorentz
forces.

1. Introduction
The self-cooled liquid metal fusion blanket has been intensively investigated for

application in fusion reactors (e.g. Malang 1988). A circulating highly conducting
liquid metal is used as coolant and breeder material. The interaction of this moving
liquid conductor and the magnetic field confining the plasma has to be analysed
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carefully in order to keep the temperatures at the plasma facing the first wall within
acceptable limits. The practical motivation for the present work stems from the fact
that the flow of liquid metal coolant in the presence of the reactor’s magnetic field
system is likely to be laminar, whereas the need for high heat-transfer rates favours
a turbulent or at least a time-dependent flow.

The induced electric currents in the fluid interact with the magnetic field and
generate Lorentz forces which greatly change the flow patterns. For the strong
magnetic fields applied in fusion reactors inertial forces are unimportant for many
applications in the internal region of the flow. The Lorentz forces are mainly balanced
by the pressure forces. The viscous effects are confined to thin boundary layers at the
walls. Strong magnetic fields justify an asymptotic approach for calculating stationary,
inertialess and laminar liquid metal MHD flow. This was done by, among others,
Hunt & Ludford (1968), Bühler (1995) and Molokov & Bühler (1994) for various
three-dimensional geometries. The calculated velocity fields and the pressure drop
agree with the experiments but heat transfer calculations based on laminar inertialess
flow show that an enhancement of heat removal as in turbulent hydrodynamic flows
would be desirable. Experiments (Burr et al. 2000) and numerical simulations (Bühler
1996) demonstrated that persistent velocity fluctuations or time-dependent mixing are
possible in such flows.

The evolution of turbulent flow under the influence of a magnetic field has been
the subject of several theoretical (e.g. Sommeria & Moreau 1982; Davidson 1995)
and experimental (e.g. Kolesnikov & Tsinober 1972b; Andreev & Kolesnikov 1997;
Lahjomri, Caperan & Alemany 1993; Alboussière, Upenski & Moreau 1999) studies.
As Joule dissipation is highly anisotropic, velocity components with non-zero gradient
in the direction of the magnetic field are dissipated and vortical structures are
elongated in this direction. This process can be described as propagation of momentum
and vorticity along magnetic field lines. As a result vortices perpendicular to the
magnetic field axis are dissipated rapidly whereas vortices aligned with the magnetic
field are damped only weakly. MHD effects may even intensify vortices which have
their axes parallel to the magnetic field (‘reversed energy cascade’ see e.g. Sommeria
& Moreau 1982). As a result a quasi-two-dimensional flow evolves, which is three-
dimensional only in the boundary layers.

Beside other possibilities described in Bühler (1996) or Burr et al. (2000) an obvious
way to produce vortices in a insulated channel is through cylindrical obstacles, so-
called turbulence promoters, which are aligned with the magnetic field. This concept
has been investigated experimentally by Kit, Turuntaev & Tsinober (1970) and
Kolesnikov & Tsinober (1972b). In the experiment of Kolesnikov & Tsinober (1972a)
it was shown that in a strong magnetic field the axes of the vortices behind a
grid were aligned with the magnetic field. Recent experimental results for a single
insulated cylinder in an insulated duct are given in Frank, Barleon & Müller (2000)
showing a linear dependence of the Hartmann number on the critical Reynolds
number (Rec = 0.94± 0.03 ∗M) for the onset of time-dependent vortex shedding.
It was also shown that the shedding frequency does not change substantially with
a rising Hartmann number. The wake created by the cylinder is narrowed by the
influence of the magnetic field. By means of an array probe for measuring the
potential at the Hartmann walls it was possible to visualize indirectly the vortices
shed by the cylinder. Earlier experiments showing qualitatively similar results were
done by Papailiou (1984). Although his experiments were carried out in an open
channel without a second Hartmann wall he also described the substantial change of
the wake geometry under a magnetic field. For a conducting cylinder in an insulated
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duct see Andreev & Kolesnikov (1997). A review of other arrangements of the cylinder
and the magnetic field is given in Lahjomri et al. (1993).

Although there are numerous theoretical and experimental studies, only a few
somewhat complicated three-dimensional MHD channel flows, such as bend flows or
flows in parallel channels, have been investigated by direct three-dimensional numer-
ical simulations (e.g. Sterl 1990; Lenhart 1994; Leboucher 1999). A fully numerical
approach is difficult because of the very thin boundary layers developing along the
channel walls. The flow structure is governed by the currents in these boundary layers
for the case of insulating walls. Resolving these boundary layers immediately leads
to problems with storage and computing time. A large-eddy simulation (LES) of a
turbulent channel flow under a uniform magnetic field was described in Shimomura
(1991). Three-dimensional simulations of an MHD flows around obstacles are scarce.
In Mutschke et al. (1997) a three-dimensional simulation of an MHD flow behind a
cylindrical obstacle is described with the magnetic field aligned with the flow.

The problem considered in the present paper is an MHD flow around an insulated
square cylinder placed in an insulated rectangular channel. The flow is exposed to a
uniform magnetic field which is oriented perpendicular to two duct walls and aligned
with the non-conducting cylinder. The aim is to show and explain the transition
from an initial three-dimensional hydrodynamic flow to a quasi-two-dimensional
MHD flow by the application of a magnetic field and the further damping of two-
dimensional vortices by Hartmann braking. Three-dimensional visualizations of the
vorticity are used to show the changes in the flow. Asymptotic methods are applied
to explain observed effects. In addition the three-dimensional electric currents are
visualized since knowledge of the paths of the currents makes it possible to explain
the flow structure.

It should be noted that even hydrodynamic three-dimensional numerical simula-
tions of the flow around a square cylinder, here used as initial flow for the appli-
cation of a magnetic field, are quite rare in the literature for moderate Reynolds
numbers (Re = 150–500). The first simulation was done by Sohankar, Norberg &
Davidson (1999). In the present work, beside the basic properties, we also provide
three-dimensional contours of the vorticity.

The formulation of the problem is given in the next section. In the §§ 3–5 the
numerical methods, boundary conditions and the choice of the numerical grid are
described. The results for the hydrodynamic case are described in § 6, the results for
the MHD case in § 7. In § 8 the influence of weak inertial effects in a quasi-two-
dimensional MHD flow is outlined. Finally the conclusions are provided in § 9.

2. Formulation
We consider the flow of an electrically conducting incompressible viscous Newto-

nian fluid (e.g. liquid metal). Under fusion blanket conditions the induced magnetic
field is negligible compared to the imposed magnetic field because the magnetic
Reynolds number Rm = µσv0a is very small (Rm � 1). In this case the isothermal flow
is governed by the inductionless equations for the conservation of mass, momentum
and charge:

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∆v +N(j × ey), (2.1)

∇ · v = 0, (2.2)

∇ · j = 0, (2.3)
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and by Ohm’s law

j = −∇Φ+ v × ey. (2.4)

With the solenoidal current field (2.3) and (2.4) one can derive a Poisson equation for
the electric potential:

∆Φ = ∇ · (v × ey), (2.5)

which is more convenient to use for numerical calculations than Ohm’s law (2.4). Here
the variables v = (u, v, w), j = (jx, jy, jz), p, t and Φ are the dimensionless velocity,
electric current density, pressure, time and electric potential. They are normalized by
the characteristic velocity in the duct: v0, σv0B0, ρv

2
0 , D/v0 and Dv0B0. The material

properties σ and ρ are the electric conductivity and the density of the fluid. The side
length D of the square cylinder is chosen as the characteristic length scale of the
problem. It should be noted that in MHD channel flows without internal obstacles
the half-height a of the duct (here a = 5D) is commonly used as characteristic length
scale. B0 is the magnitude of the uniform and constant magnetic field Bey . Two
independent dimensionless parameters appear. The Reynolds number

Re =
v0D

ν
(2.6)

denotes the ratio of inertia and viscous forces where ν is the kinematic viscosity. The
interaction parameter

N =
DσB2

ρν
, (2.7)

also known as the Stuart number, represents a ratio of electrodynamic forces and
inertia forces. A further non-dimensional group is the Hartmann number

M = DB

√
σ

ρν
, (2.8)

which appears as the product
√
NRe. The square of the Hartmann number represents

the ratio of electrodynamic forces and viscous forces. In addition to the governing
equations, boundary conditions have to be specified which are discussed in § 4. To
describe the vortex shedding at the cylinder the Strouhal number is used:

St =
fD

v0

, (2.9)

where f is the shedding frequency. The oscillating lift and drag forces on the cylinder
are scaled by the dynamic pressure 1

2
ρv2

0A⊥, where A⊥(A‖) is the area of the cylinder
perpendicular (parallel) to the main flow direction. In the present work only the
pressure parts of the lift and drag forces were considered:

CL =
2

A‖

∫
A‖
p dA, CD =

2

A⊥

∫
A⊥
p dA. (2.10)

3. Numerical methods
The system of equations (2.1)–(2.5) is solved by a finite difference method on an

orthogonal equidistant grid. The spatial discretization is done on a staggered grid. All
vector quantities are defined on the corresponding surfaces of the cell, while the scalar
quantities are defined at the centre of the cell. The discretization is of second-order
accuracy in time and space. The time is discretized by an explicit Adams–Bashforth
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scheme. Centred differences are used for the discretization of the diffusive term. For
the convective terms a variant of the lecusso discretization scheme proposed by
Günther (1992) is used. The basic algorithm requires the solution of two Poisson-type
equations at each time step. The equation for pressure is derived from the fractional-
step method (Kim & Moin 1985; Perot 1993). For the potential, equation (2.5) is
solved.

In the fractional-step method for the pressure–velocity coupling equation (2.1)
is integrated without the pressure term, resulting in a temporary velocity v′. The
pressure p(n+1), the superscript denoting the time step, is calculated to ensure a
solenoidal velocity field, leading to

∆p(n+1) =
1

∆t
∇ · v′, (3.1)

where ∆t is the time increment. Then p(n+1) is used to update v′ to get the final v(n+1):

v(n+1) = v′ − ∆t · ∇p(n+1), (3.2)

which is divergence-free. Knowing the new velocities v(n+1) the electric potential and
finally the currents are computed according to equations (2.5), (2.4). The currents are
also divergence-free by construction.

The Poisson-type equations are solved by a direct method based on fast Fourier
transforms (FFT) which are the fastest algorithms for the solution of the discrete
Poisson equation in rectangular domains on orthogonal equidistant grids, see e.g.
Botta et al. (1997). For more complicated domains with internal boundaries and
obstacles as in this work the capacitance matrix method (e.g. O’Leary & Widlund
1979) provides a technique with the advantage of extending the use of fast Poisson
solvers to more generally bounded regions. In this technique each of the Poisson
equations for pressure and potential must be solved two times at every time step.
The additional computational effort for the capacitance matrix method including the
additional solution of two Poisson equations is easily compensated by the advantage
of using a fast Poisson solver instead of taking another direct solver for an irregular
geometry.

4. Boundary conditions
4.1. Conducting walls

The computation of the electric potential in arbitrary conducting walls requires the
solution of the thin-wall condition (Walker 1981):

j · n = −∇t ·
(σw
σ
tw∇t Φ

)
. (4.1)

Equation (4.1) expresses the conservation of charge at the fluid/wall interface. It
is assumed that the thickness of the conducting wall is much smaller than the
characteristic scale chosen earlier. With that assumption the electric potential over
the thickness of the wall is nearly uniform. The currents leaving the fluid region
enter the wall of non-dimensional thickness tw and turn in the tangential direction
producing a tangential potential distribution as stated in (4.1). The product c = σwtw/σ
is referred to as the wall conductance ratio. By replacing the normal current at the
fluid/wall interface by ∇φn we finally get

∇Φn = −∇t · (c∇t Φ). (4.2)
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To ensure that the three-dimensional Poisson equation for the electric potential (2.5)
matches the conservation law (4.2) an iterative method described by Leboucher (1999)
is used.

4.2. Treatment of the Hartmann layer

With a magnetic field applied to the duct flow thin boundary layers develop at the
channel walls. At the walls parallel to the magnetic field the so-called side layers
appear which have the thickness δ ∼ 1/

√
M. At the walls perpendicular to the

magnetic field very thin Hartmann layers with thickness δ ∼ 1/M appear. For high
values of M the Hartmann layers are so thin that it becomes unfeasible to resolve
them numerically with a code based on equidistant grid spacing. To overcome this
problem the flow region is split into parts. One is the core, where viscous effects are
negligible in comparison with the electromagnetic interaction. The core is surrounded
by viscous Hartmann and side layers near the walls. In many references the core is
treated separately and viscous corrections are added that are required for satisfying
no slip at the walls and to obtain a uniformly valid solution. In the present work the
numerical resolution is high enough that the side layers are resolved accurately so
that there is no need for an analytical side layer model. However the much thinner
Hartmann layers would cause problems during the numerical analysis. For that reason
an analytical boundary layer model is used here to describe the viscous corrections
near the Hartmann walls Hunt & Ludford (1968).

The essence of the Hartmann layer model is that the layers provide a new current
path, in addition to that in the wall. This leads to a modification of the thin-wall
condition which, in the form

n · ∇Φ = −∇t · ((c+ δ)∇t Φ) (4.3)

is now applied to the core potential. Although this boundary condition was initially
used for inertialess MHD flows at high Hartmann numbers it is also advantageous
for inertial MHD flows as shown by Leboucher (1999) since it allows the Hartmann
layers to be left unresolved by the numerical grid while at the same time considering
the effects due to the closing together of the currents in the Hartmann layer and
Hartmann wall. The numerical simulation is now only limited by the resolution of
the side layers, which are much thicker than the Hartmann layers and easier to
resolve. With the known core solution it is possible to reconstruct the solution in the
Hartmann layers if desired.

If equation (4.3) is used as a boundary condition for the core flow at the Hartmann
wall, the boundary conditions for the velocity also have to be modified. This to-
gether with the boundary conditions for the electric potential at the entry and outlet
is explained in the next section. The method is somewhat similar to that applied
by Walker, Ludford & Hunt (1972), where the Hartmann layers are treated sepa-
rately from a combined core–side layer solution for a steady-state three-dimensional
expanding flow.

4.3. Velocity, electric potential and pressure

The sidewalls of the duct and the cylinder are impermeable and friction is present.
So the boundary condition for the velocity at the walls is

v|wall = 0. (4.4)

The solution of the boundary layer equations for the Hartmann layers results in an
exponential decay of the tangential components of velocity from the value in the
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core to zero at the wall. Since the numerical calculations are performed for the core
region including the side layers, appropriate conditions for the core velocity have to
be specified at the Hartmann walls because no slip is already accounted for in the
Hartmann layer model. A practical boundary condition here is

∂2vt
∂y2

= 0, (4.5)

which corresponds to a linear extrapolation of the core solution towards the wall.
This condition is in agreement with that given by Hunt & Ludford (1968) for core
variables at large Re and N.

With the known exponential profile of the tangential velocity component in the
Hartmann layer and the continuity equation a boundary condition for the normal
velocity component of the core flow at the Hartmann wall can be derived (Hunt &
Ludford 1968; Leboucher 1999):

vn = M−1∇t · ut, (4.6)

so that at leading order vn = 0 + O(M−1). The error introduced by the boundary
condition used, vn = 0, is O(M−1) and vanishes for high Hartmann numbers. The
normal component of the velocity becomes negligible since the layers are very thin
for large M and do not carry significant volume flux compared with the core.

At the entry the flow profile is fixed at a fully developed MHD-flow profile which
has to be computed beforehand. At the outflow, vortices produced at the cylinder
are expected to leave the domain. This requires the use of non-reflective boundary
conditions to minimize upstream effects from the outlet. In the present work a
convective boundary condition was chosen (see e.g. Sani & Gresho 1994 or Sohankar
et al. 1999):

∂v

∂t
+U

∂v

∂x
= 0, (4.7)

where U was set to the mean velocity at the entry.
The boundary conditions for the electric potential at the entry and the outlet of

the computational domain are chosen such that no electric currents leave or enter the
domain, to be compatible with the solenoidal current field:

∂Φ

∂n

∣∣∣
entry

= 0,
∂Φ

∂n

∣∣∣
outlet

= (v × B) · n. (4.8)

This results in a zero normal component of the current at the entry and at the outlet.
The outlet condition is not exact in the sense that it is valid only averaged across
the exit plane. If it is applied locally as shown in equation (4.8) it is assumed that
currents perpendicular to the exit plane are absent. This is not generally the case if
vortices leave the computational domain. However these currents are on the order
of M−1 and negligible for large M in comparison with the contributions taken into
account.

All walls are treated as insulated. At the Hartmann walls the model boundary
condition (4.3) for the potential was used with the wall conductivity c = 0. At
the sidewalls the thin-wall condition (4.2) with c = 0 was used which results in
a homogeneous Neumann boundary condition. At the insulated cylinder walls a
homogeneous Neumann boundary condition was also used.

In the numerical algorithm described in § 3 a Poisson-type equation for the pressure
(3.1) is solved. From equation (3.2) a boundary condition for the pressure can be
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derived:
∂p

∂n

∣∣∣n+1

boundary
=

1

∆t
(v′ − vn+1) · n. (4.9)

Owing to the use of staggered grids for velocity and pressure, the pressure at the
boundary is independent of the introduced temporary velocity at the boundary (see e.g.
Peyret & Taylor 1983; Lenhart 1994). With the assumption that the boundary values
for the temporary velocity v′ are the same as for the velocity vn+1 a homogeneous
Neumann boundary condition for the pressure can be deduced from equation (4.9).
Therefore the pressure only needs to be calculated for interior mesh points.

4.4. Boundary conditions for the hydrodynamic calculations

The computed three-dimensional hydrodynamic results are intended for use as initial
condition in the MHD case to investigate the damping of the vortices due to a
magnetic field. Therefore the boundary conditions were chosen to ensure minimal
entry effects for MHD calculations. At the entry a uniform block profile was used
which is quite similar to the flow profile of a fully developed MHD flow in an
insulated duct. At the sidewalls the no-slip condition was used. The choice of this
boundary condition for the hydrodynamic case may influence the vortex shedding due
to the additional blockage effect of the developing boundary layers at the sidewalls
(±z) which confine the flow. This was necessary because in the MHD case the side
layers are resolved by the numerical grid.

At the bottom and top wall, where in the MHD case the thin Hartmann layers
are located, a Neumann-type boundary condition has been adopted for the u- and
w-components of the velocity and a Dirichlet-type boundary condition for the v-
component:

∂u

∂y
= 0,

∂w

∂y
= 0, v = 0. (4.10)

This boundary condition is compatible with the model for the Hartmann layer
used later in the MHD case. The drawback of this boundary condition compared
to an undisturbed hydrodynamic computation near the wall is the zero normal
component of the velocity, which may influence vortices near the wall. For purely
hydrodynamic computations homogeneous Neumann conditions should also be used
for the v-velocity as in Persillon & Braza (1998). Additionally it should be noticed
that periodic boundary conditions in the spanwise direction are questionable for
hydrodynamic simulations since in many experiments skewed vortex shedding can be
observed and the flow does not show periodic properties. At the outlet the convective
boundary condition (4.7) already mentioned was used.

5. Numerical grid resolution
The flow configuration is known to be very sensitive to various numerical and

physical parameters. Extensive testing of the influence of numerous parameters like
grid resolution, domain size, blockage, boundary conditions, far- and near-body
resolution for the square cylinder was done by Sohankar, Norberg & Davidson (1997,
1998). It appears that even recent two-dimensional simulations of this case are not
independent of the grid, but they are believed to be good enough to show influences
of physical parameters.

The present application justifies the use of orthogonal equidistant grids. The main
purpose of the computation was to investigate the downstream behaviour of the
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Case Re Grid nx × ny × nz Points Min grid size
1 200 200× 80× 100 1.6× 106 0.1
2 250 250× 80× 125 2.5× 106 0.08

Table 1. Grid parameters for the two cases investigated.

B0

B0
B0

B0

10D

v0

a

4.5D10D 5D 20D

1D

Y

X

Z

Figure 1. Geometry and coordinates.

vortices shed in the presence of a magnetic field. Consequently a coarser grid in the
wake of the cylinder, as it is often used in purely hydrodynamic flows, is not applicable
because additional numerical diffusion may dominate over the MHD damping. The
best compromise with respect to the available computer resources and solvers was to
use an equidistant grid with the drawback of lower resolution of the boundary layers
at the cylinder. After some two-dimensional tests it was found that the resolution of
the boundary layers should be at least 3–4 grid points to get reasonable results. This
could be achieved by the two- and three-dimensional versions of the equidistant grids
used in this work (see table 1). The solid blockage in the geometry used (see figure
1) was 10%. The number of nodes distributed over one unit length of the cylinder in
the (x, z)-plane was 10 in case 1 and 13 in case 2. The distance between the nearest
grid point and the cylinder surface was δ = 0.05 for case 1 and δ = 0.04 for case
2. The geometry and grid resolution used for the two-dimensional hydrodynamic
case is found to have two main effects on the results. Due to the high blockage
the computed values for the mean drag coefficient (CD = 1.75) were higher than in
other recent simulations with low blockage. The lift coefficient is very sensitive to
various numerical parameters. In the present simulation the lift coefficient is sensitive
to the grid resolution near the obstacle and falls with a coarser grid resolution, which
might explain the low values of the RMS lift coefficient CL = 0.192 in the present
two-dimensional simulation. These effects of the blockage ratio and grid resolution
were also reported by Sohankar et al. (1997, 1998). It should be noted that better
agreement could be found with the calculations of Davis, Moore & Purtell (1984)
who used a blockage ratio of 16% and a comparable grid resolution.

The Strouhal number for the two-dimensional case was found to be St = 0.166
which is in the range of values St = 0.165–0.170 found by the latest simulations of
Sohankar (1998) for two-dimensional calculation of the square cylinder for various
blockage and grid resolution parameters. It is close to the value of St = 0.16 found
by Minewitsch, Franke & Rodi (1994) at a blockage ratio of 8.3%. The reason why
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despite the low boundary-layer resolution near the obstacle the Strouhal number
agrees quite well with the existing results may lie in the fact that the resolution of the
absolutely unstable area behind the cylinder is more important. This can be achieved
with comparatively coarse grids. Following Huerre & Monkewitz (1990), there is a
strong evidence that the explanation of von Kármán vortex shedding cannot be found
in the details of flow separation from the cylinder surface. From stability analysis of
the wakes behind blunt bodies it is known that the key to the frequency selection of
vortex shedding behind blunt bodies is a hydro-mechanical resonance mechanism in
the absolutely unstable area, see also Oertel (1990).

From this it may be concluded that if one is interested in the transient and the
qualitative spatial evolution of the flow, the resolution in the (x, z)-plane of the
grid used here is sufficient. It is now possible to place enough grid points along
the spanwise direction for the three-dimensional calculation to resolve the expected
streamwise vortices with a wavelength of approximately D with respect to the available
computer resources. In Zhang, Noack & Eckelmann (1994) a systematic grid variation
was carried out for the circular cylinder to find the lowest allowable grid resolution in
the spanwise direction for one wavelength of the streamwise vortices, i.e. two counter-
rotating streamwise vortices. Following their recommendation we use ∼ 8 grid points
for the resolution of one wavelength. The spanwise distance (10D) was chosen to be
as long as possible in order to avoid the inhibition of possible instability modes and
their interactions.

6. Results for the hydrodynamic case
As the main objective of this work was the investigation of MHD flow, the

hydrodynamic part was reduced to the calculation of the basic flow patterns and
properties of the flow. To the knowledge of the authors, only one published numerical
simulation of the three-dimensional case exists, by Sohankar et al. (1999). Up to
now no three-dimensional visualization of the flow has been published. Therefore the
present results for the hydrodynamic case are reported. As a first example the flow
at a Reynolds number of 200 based on the cylinder side length is investigated. In
the hydrodynamic case the Kármán vortex street evolves with secondary instabilities
forming three-dimensional streamwise vortex structures (see figure 3). These are similar
to those behind a circular cylinder investigated by Williamson (1996) at the same
Reynolds number. The present simulation of the three-dimensional hydrodynamic
velocity field is later used as initial condition for the simulation with an applied
magnetic field.

The flow field was discretized according to case 1 (table 1). The dimensionless time
step was set to 2 × 10−3 which fulfils the stability limits for the Adams–Bashforth
scheme used in combination with the lecusso Upwind-scheme by Günther (1992),
see Mück (1999). The initial condition is equivalent to an impulsive start of the flow
with the velocity v0 everywhere in the flow field.

The dimensionless drag and lift coefficients CD, CL are computed at every time step.
The Strouhal number was determined from the frequency f of the fluctuating lift
signal when the vortex shedding was established.

In the present calculation the two- and three-dimensional vortex shedding is gener-
ated without imposing external perturbations. The self-excitation is due to truncation
errors and round-off errors of the computer. After a temporary two-dimensional state
the flow develops self excited three-dimensional flow patterns (see figure 3). The flow
transition from the temporary two-dimensional state to the three-dimensional state is
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Figure 2. Plot of the lift and drag forces on the cylinder at Re = 200.

marked by a sudden decrease in the lift and drag force at t ≈ 290, see figure 2. The
Strouhal number in the two-dimensional state (St = 0.166) is slightly higher than in
the following three-dimensional state. The beginning of the transition is marked by
slight disturbances of the lift and drag force amplitude.

Compared to the simulation of Sohankar et al. (1999) at the same Reynolds
number, in the present simulation the transition to the three-dimensional state is
delayed. However the transient behaviour in the two- and three-dimensional state of
the flow agrees well.

The flow exhibits characteristic force pulsations with distinct regions of high and low
values of the drag and lift coefficient (see figure 2). The apparent random pulsations
have a repetition time of roughly 60–80 time units (10–13 shedding periods).

Following Zhang et al. (1994) the second wake instability in the case of the
circular cylinder is a Taylor or Görtler instability forming rib-like vortices. The same
mechanism may be present in the near wake of the square cylinder because of the
similar flow patterns.

In the present simulation at the aspect ratio used of 10 a mix of spanwise three-
dimensional instabilities with substantial deformation of the primary instability was
observed. This makes the determination of the spanwise wavelength and the type
of the secondary instability (mode A, mode B) difficult. The spanwise wavelength
of the rib vortices is found to be approximately 2D–3D in the near wake one
diameter downstream of the cylinder. Further downstream the spanwise wavelength
is increasing. The flow shows ingredients of spanwise secondary mode A and B
instability structures. Also vortex-adhesion points at the cylinder could be observed.

One reason for the irregular secondary vortices could be a competition between
modes, in analogy to the circular cylinder. In a stability analysis of Barkley &
Henderson (1996) for the circular cylinder it is shown that there are several unstable
mode A wavelengths above a Reynolds number of 190. For a sufficiently high aspect
ratio it is expected that the different modes alternate in time and space. Therefore
irregular flow patterns are expected, see e.g. Henderson (1997) for the circular cylinder.
For Re = 250 a type of secondary instability similar to the mode B instability for the
circular cylinder flow is found. The grid resolution was enhanced to 2.5 × 106 grid
points corresponding to case 2 in table 1. The flow pattern observed is more regular
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Figure 3. Isovorticity surface plot of the three-dimensional hydrodynamic flow around a square
cylinder at Re = 200, ωy = ±6; ωx = ±3.
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Figure 4. Hydrodynamic flow, Mode B vortex shedding Re = 250; ωy = ±6; ωx = ±3.

than in the case of Re = 200 (see figure 4). It appears that the spanwise wavelength
of the streamwise vortices now is ∼ 1D. Comparing figure 4 with the visualizations of
Zhang et al. (1994) for the mode B shedding from the circular cylinder at Re = 260
shows an obvious similarity. From the visualizations it can be also observed that the
streamwise vortices are in an inline arrangement which marks mode B vortex shedding
following Williamson (1996). The drag and lift forces show a similar behaviour to the
case Re = 200. Although not monitored over a sufficiently long time due to resource
limitations there was a tendency for the force pulsations to occur less frequently than
in the case Re = 200.
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With regard to the grid resolution used, the blockage effects and the sensitivity
to various numerical parameters the present hydrodynamic simulation seem to be in
acceptable agreement with previous results for the hydrodynamic case reported in
Sohankar et al. (1999).

7. Results for the magnetohydrodynamic case
7.1. Transition towards two-dimensional flow

The result for the hydrodynamic case (see previous section) is used as initial condition
for the MHD case. The same grid resolution as in the hydrodynamic case was used to
avoid different numerical dissipation. Especially at low interaction parameters the flow
may have three-dimensional components before it becomes two-dimensional at higher
interaction parameters. Additional boundary conditions for the electric potential are
specified according to § 4.

The first case investigated was at Re = 200, M = 6.33, N = 0.2. These values
correspond to a rescaled Hartmann number Ha = 31.6 and an interaction parameter
N‖ = 1. The groups Ha = αM and N‖ = αN are based on the Hartmann length a as
used in duct flow problems. The aspect ratio α is denoted by α = a/D = 5.

The result is shown in figure 5. Although at these parameters the magnetic field
can be considered as weak (compared to fusion-relevant parameters) the action of the
magnetic field on the streamwise vortices is quite obvious. These vortices, which are
perpendicular to the magnetic field, are damped strongly. At locations where due to
the curvature of the primary Kármán vortices vorticity components perpendicular to
the magnetic field appear, strong damping also occurs resulting in a fragmentation of
the vortices into two parts further downstream (see the arrows in figure 5). Diffusion
of vorticity in the direction of the magnetic field further downstream, which leads to
an elongation of the remaining vortex fragments, could not be observed because the
channel was too short. A further interesting detail regarding figure 5 is that the eddies
have their ends perpendicular to the wall to a good approximation. Following the
analysis of Sommeria & Moreau (1982) for high Hartmann numbers and interaction
parameters the electric boundary conditions at an insulating wall can be transformed
into a single condition for the vorticity which requires that

∂v⊥
∂y

(x, 0, z, t) = O

(
v0

Ml⊥

)
= O

(
v0√
Re l‖

)
, (7.1)

where v⊥ is the velocity component perpendicular to the magnetic field, i.e. parallel
to the Hartmann wall, and l⊥ and l‖ are typical length scales perpendicular and
parallel to the magnetic field. The physical interpretation of the order of magnitude
in equation (7.1) is that the vortices have their ends perpendicular to the Hartmann
wall although they could bend in the bulk of the flow. It is remarkable that this
characteristic property of the MHD flow can already be observed in figure 5 at
comparatively low Hartmann numbers and interaction parameters. The tendency
towards an alignment in the magnetic field direction is already visible.

The next calculation at M = 14.2 (Ha = 71) and N = 1 (N‖ = 5) was started using
the previous computation at Re = 200, M = 6.33, N = 0.2 as initial value. Since
for this case the inertia forces have the same magnitude as the electrodynamic forces
(N = 1) there should be a strong tendency towards a two-dimensional flow, i.e. an
alignment of the vortices in the magnetic field direction and a complete damping of
vorticity components perpendicular to the magnetic field. This can be clearly observed
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Figure 5. Isovorticity surface plot at Re = 200, M = 6.33, N = 0.2, ωy = ±6; ωx = ±3.
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Figure 6. Isovorticity surface plot at Re = 200, M = 14.2, N = 1, ωy = ±6; surfaces ωx = ±3 are
not present.

in figure 6 although the simulation time was not long enough to reach the end of the
transition. For reasons of computer time and costs the simulation was stopped when
the differences in successive periods became small.

To observe the transition to two-dimensionality one can consider the y-component
of the velocity parallel to the magnetic field at fixed parameters. In figure 7 the
transient behaviour of the velocity parallel to the magnetic field is shown at three



MHD duct flows with obstacles 279

0.05

0

–0.05

–0.10

0.2D
0.7D
1.2D

400 420 440 460 480 500

vy

Time

Figure 7. Re = 200; M = 14.2; N = 1: transient behaviour of vy in the mid-plane at three
different locations in the wake of the cylinder.

different monitoring locations in the midplane (y = 5) of the duct in the wake of the
cylinder. It can clearly be seen that the fluctuations and the value of the y-component
of velocity tend to zero. From this it can be concluded that the transition to the
two-dimensional state occurs in the interval 0.2 6 N . 1.

During the transition to a two-dimensional state the flow is shaped in such a
way that the interaction with the magnetic field is reduced to a minimum. The flow
evolves so as to minimize the global Joule dissipation. The electric currents in a
perfectly two-dimensional flow would vanish (no Joule dissipation) assuming that the
flow domain is infinite without Hartmann walls. Without electric currents there is no
coupling between the magnetic field and the flow, i.e. the flow is hydrodynamic. This
may be also concluded from the rotation of Ohm’s law (eq. (2.4)) where the currents
vanish when the flow is two-dimensional.

In the present case with Hartmann walls the flow achieves a quasi-two-dimensional
state (with minimized global Joule dissipation) which is three-dimensional only in the
very thin viscous Hartmann layers. The currents close together in the Hartmann layers
and cause a continuous weak damping of the two-dimensional vortices in the core
(Hartmann damping). Disregarding the Hartmann damping, which acts on a larger
time scale than the Lorentz force, the development follows the general principles
noted in Davidson (1995). The Lorentz force acts to redistribute angular momentum
in the magnetic field direction. The component of the angular momentum parallel to
the magnetic field is preserved. The orientation of the axis of the cylinder parallel
to the magnetic field facilitates the generation of two-dimensional flow structures
since the main Kármán vortices are aligned with the magnetic field. The transition
of the flow to a two-dimensional structure is achieved due to the suppression of
the secondary instability of the vortex street by the magnetic field as described in
§ 6. Beyond a specific threshold of the magnetic field the three-dimensional patterns
completely disappear. In the following a rough estimate is given for the time scales of
the transition to a two-dimensional state for low magnetic Reynolds numbers in an
unbounded domain. As already stated in Sommeria & Moreau (1982) the vorticity in
the magnetic field direction satisfies

∂ωy

∂t
=

1

Re
∆⊥ωy −N∆−1

⊥
∂2ωy

∂y2
, (7.2)
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assuming that the flow is already close to two-dimensional with ∂/∂y � ∂/∂x, ∂/∂z
and v . u, w (neglecting classical vortex stretching). If the Reynolds number is
large Re � 1 one may neglect the viscous part. The remainder of the right-hand
side demonstrates the diffusive character of the propagation of disturbances due to
electromagnetic forces. This pseudo-diffusion can be regarded as a degenerate form
of Alfvén-wave propagation for small Rm. A typical time scale for the suppression of
velocity differences between two transverse planes distance l‖ apart can be derived
from equation (7.2):

td ≈ 1

N

l2‖
l2⊥

= τ

(
l‖
l⊥

)2

, (7.3)

where the magnetohydrodynamic interaction time τ is the typical time scale for the
damping of isotropic turbulence. Velocity gradients in the magnetic field direction are
suppressed, which results in an elongation of vortices in the magnetic field direction
(magnetic vortex stretching). A flow will be two-dimensional if the time required for
diffusion along field lines is shorter than a characteristic time in the problem, the
latter being in the present case the inverse of the Strouhal number,

td .
1

St
. (7.4)

Roughly speaking, a sufficient condition for a quasi-two-dimensional flow requires
that

N & a2St. (7.5)

Since it is assumed that every perturbation must be diffused over the half-height a of
the duct the relation gives larger interaction parameters than observed in the present
case where the setup facilitates the transition to a two-dimensional flow.

It should be noted, although not proved in this work, that the two-dimensional
transition should occur for all Re > 200 at the same interaction parameter since
the ratio of electromagnetic and inertia forces, which is the important ratio for this
process, should remain constant for the two-dimensional transition. As shown also in
equation (7.2) the MHD vortex stretching effect, which causes the transition to a two-
dimensional flow, is only dependent on the interaction parameter at high Reynolds
numbers.

The only experiments known to the authors where the transition to a two-
dimensional laminar flow in a comparable setup was investigated were those of
Kit et al. (1970) and Kolesnikov & Tsinober (1972b). They investigated among other
configurations the flow behind an insulated circular cylinder aligned with the magnetic
field in an insulated channel with mercury. The Reynolds number was Re ≈ 8700. At
a critical interaction parameter N ≈ 1.2 (based on the cylinder diameter) the flow was
quasi-two-dimensional. This was indicated with a coefficient of three-dimensionality.
Measurements of the fluctuations in a plane perpendicular to the magnetic field
showed that due to the suppression of turbulent transport intensified generation of
two-dimensional disturbances, with the axis parallel to the magnetic field, takes place.
It was additionally observed that the critical interaction parameter did not depend
on the Reynolds number.

These experimental results for the transition to a two-dimensional laminar flow in
a comparable setup are in a good agreement with the present numerical calculation.
Nevertheless the tendency towards a two-dimensional flow at N ∼ 1 was also ob-
served in completely different setups. In Zikanov & Thess (1998) the transformation of
initially isotropic turbulence in a periodic box without walls was numerically investi-
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gated. In their case at N ∼ 1 turbulent bursts alternate with periods of quasi-laminar,
quasi-two-dimensional behaviour.

7.2. Effects of Hartmann damping

The following calculations show the damping of the two-dimensional laminar flow
due to Hartmann damping, which is reflected in a decline of the vortex diameters
as the (two-dimensional) vortices travel downstream. The main aim was to find the
parameters where the vortex street is completely damped. During the calculations
an additional effect on the vortices appeared, which was not shown in any previous
MHD calculation. The vortices are rejuvenated at their ends where they touch the
Hartmann walls. This weak effect of inertia is explained in § 8.

Sommeria & Moreau (1982) show that for quasi-two-dimensional MHD flows in
insulated ducts the damping of two-dimensional vortices due to the closing of currents
in the Hartmann layer acts on a time scale

τHa = α

(
N

M

)−1

. (7.6)

As the Hartmann damping acts on a longer time scale than the MHD damping of
isotropic turbulence (equation (7.3)) much higher interaction parameters are required
to damp the vortex street completely. One can expect that, for the core when τHa
is smaller than a characteristic time scale of the problem, here τc = 1/St, all time-
dependent properties of the flow will undergo a fast transition towards a stationary
solution. This reasoning leads to a complete damping of time-dependent motion when

τHa < τc = 1/St, (7.7)

or when

N > αMSt. (7.8)

The relation (7.8) is especially useful, since it provides a unique representation of
results for different aspect ratios. This is helpful when different experiments or
calculations are compared. Bühler (1996) gives an extension of equation (7.6) for
quasi-two-dimensional MHD flows with thin conducting walls as

τ∗Ha = α

(
N

M
+

cHaN

1 + cHa

)−1

. (7.9)

In the limit of non-conducting walls equation (7.6) is recovered. The dimensionless
damping time τ∗Ha is useful to compare the MHD damping of two-dimensional vortices
in different geometries which produce vortices of different aspect ratio. Important
for the MHD damping of vortices is their typical aspect ratio α = a/l⊥ (l⊥ ≈ D). In
spite of identical Hartmann number and interaction parameters, which are usually
based on one typical length scale of the problem, the damping of vortices with a
different aspect ratio is different. The MHD damping becomes weaker with higher
aspect ratio. The next calculation at M = 20 (Ha = 100) and N = 2 (N‖ = 10) was
started using the result of the previous computation at Re = 200, M = 14.2, N = 1
as initial value. In this case the electrodynamic forces are dominant and the flow
becomes two-dimensional. This can be clearly seen in figure 8. The alignment of the
shed vortices in the magnetic field direction is almost perfect. The flow is quasi-two-
dimensional with the exception of the flow in the Hartmann layers. Additionally the
weak damping of the two-dimensional vortices downstream due to the closure of the
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Figure 8. Isovorticity surface plot at Re = 200, M = 20, N = 2, ωy = ±6; surfaces ωx = ±3 are
not present.

currents in the Hartmann layers can already be observed. The vortices decrease in
diameter as they travel downstream.

At higher interaction parameters an additional effect besides the vortex damping
becomes visible. Although the effect is rather weak it is obvious from figures 9 and
10 that the vortices are rejuvenated at their ends and look like cigars. This effect is
also visible in the potential (see e.g. figure 11(b)) since the potential is linked to the
stream function in quasi-two-dimensional flows, see e.g. Sommeria & Moreau (1982).

This result may have some importance for potential measurements in MHD flows
where it is commonly assumed that the flow is strictly two-dimensional and the
potential distribution is mapped to the Hartmann walls where it is measured by
potential probes in the wall. Due to the curvature of the potential isolines along the
direction of the magnetic field the potential distribution at the Hartmann wall tends
to be equallized and the potential differences may fall below the precision of the
measurement technique. In this case an existing vortex can no longer be detected by
potential probes in the wall.

Interestingly, similar results for a potential variation in magnetic field direction
have been obtained for laminar buoyant MHD flows in an asymptotic solution of
Bühler (1998) where inertia has been neglected. This derivation can be modified by
taking into account weak inertial effects to explain the curvature of the vortices. The
analysis is presented in § 8.

In figures 10, 11(a) and 11(b) for the calculation at M = 52.8 (Ha = 264.4) and
N = 14 (N‖ = 70) plots of vorticity and potential are shown. In figure 10 the stronger
Hartmann damping compared to the previous cases can be seen. The vortices decrease
rapidly in diameter as they travel downstream. The curvature of the vortices in the
direction of the magnetic field is still visible. One vortex close to the exit seems to
exist only in the core of the flow (figure 10). In this case the representation of a vortex
by vorticity surfaces of a fixed level is misleading, since at a lower level of ωy the
vortex still exists over the full height between the Hartmann walls. The isoline plots
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Figure 9. Isovorticity surface plot at Re = 200, M = 28.3, N = 4, ωy = ±6; surfaces ωx = ±3 are
not present.
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Figure 10. Isovorticity surface plot at Re = 200, M = 52.9, N = 14, ωy = ±6; surfaces ωx = ±3
are not present.

of the potential (figure 11) show the connection between flow streamlines and the
potential. In figure 11(b) the curvature of the potential isolines, which corresponds to
the curvature of the vortices, can be seen. A further enhancement of the interaction
parameter results in a nearly complete suppression of the vortex shedding at M = 84.9
and N = 36. The vortex shedding is still present but the vortices are damped almost
immediately after they are shed. Since it is difficult to detect exact stability limits with
a fully numerical code the end of the vortex shedding was defined at parameters for
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Figure 11. Isolines potential plot at Re = 200, M = 52.9, N = 14.

which the level of vorticity at the exit is below a certain threshold. This criterion
introduces some uncertainty concerning the end of vortex shedding. Taking equation
(7.8) as a qualitative measure one gets τHa/τc = 1.8 from the present numerical
simulation, which is the correct order of magnitude for the total damping of the
vortex street for which τHa/τc < 1 has been roughly estimated.

All the results shown so far support the idea of a quasi-two-dimensional MHD
flow model at high M and N. With such a model one could investigate the complete
damping of the vortex shedding more efficiently than with a three-dimensional code
that calculates quasi-two-dimensional flows.

7.3. Three-dimensional electric currents

To understand the mechanisms of vortex damping in a channel flow it is essential to
know the path of the electric currents. It is then easy to draw conclusions about the
Lorentz forces acting on the fluid. The current paths of a MHD flow in a rectangular
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Figure 12. Current paths: (a) in an insulated channel and (b) of a single vortex.

channel are well known, see e.g. Sterl (1990). For an insulated channel the electric
currents flow in the transverse section plane of the channel, see figure 12a). For a single
vortex aligned with the magnetic field between two Hartmann walls located in an
non-moving fluid the radially symmetric electric currents close together along the axis
of the vortex, see figure 12b). The direction of the current depends on the clockwise
or anti-clockwise rotation of the vortex. The current paths of a moving vortex in
a channel flow is the superposition of the two current patterns. This is shown for
clockwise and anti-clockwise rotation in figure 13. For the clockwise rotation (figure
13a) outside the vortex the current density is equally distributed over the channel
height. In the sphere of the vortex the current is deflected in the direction of the
Hartmann walls and the currents partially flow into the Hartmann layer. It will be
shown later that the currents entering the Hartmann layer are directly proportional to
the core vorticity and thus to the strength of the vortex. On one side of the vortex the
current density is increased, on the other side it is reduced resulting in a braking of
the rotation of the vortex. For the anti-clockwise rotation (figure 13b) the argument
is analogous. The electric currents flow approximately in a plane x = const if this
plane cuts the vortex exactly into halves. In any other case the current does not flow
in one plane but changes its plane in the sphere of the vortex in a direction towards
the vortex axis (clockwise rotation) or away from the vortex axis (anti-clockwise
rotation).

7.4. Effects of a magnetic field on the properties of the vortex street

The only experimental works where the shape of the vortex street has been investigated
experimentally are Papailiou (1984) and Frank et al. (2000). Papailiou’s work was
carried out in an open channel with one Hartmann wall missing, so that he could
observe the wake of the cylinder on the free surface. Although one can only infer
indirectly what is happening under the surface of the liquid metal, one can find
qualitative criteria for the action of the magnetic field. He observed that under
the action of a magnetic field the wake of the cylinder is narrowed, see figure 14.
Additionally he observed that the distance between the vortices in the main flow
direction is reduced and the vortices are organized in rows travelling downstream.
Concerning the Strouhal number he observed that as long as vortex shedding exists
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Figure 13. Electric current paths of a vortex moving with the flow in an insulated channel.
(a) Clockwise rotation. (b) Anti-clockwise rotation. Re = 200, M = 52.9, N = 14.
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Figure 14. Effect of a magnetic field on the wake, following Papailiou: (a) no magnetic field,
(b) with magnetic field.

the effect of a magnetic field aligned with the cylinder on the Strouhal number is
weak.

These results were confirmed by the experiments of Frank et al. (2000) in a closed
insulated channel. With an array of potential probes in the Hartmann walls they
could detect the shape of the vortex street. They also found that the wake of the
cylinder is narrowed and that the vortices are more organized with a rising magnetic
field. They measured a minimal decrease (−0.02) of the Strouhal number when the
Hartmann number was doubled at a fixed Reynolds number.

The present numerical simulation confirmed most of the experimental observations.
From the plots shown in the previous sections it is clear that the vortex street is
strongly organized and the wake is narrowed on the application of a magnetic field.
The Strouhal number had a slight tendency to rise with stronger magnetic fields
which may be related to the fact that in the simulation a square cylinder was used.

It was also possible to investigate the influence of the magnetic field on the drag and
lift forces on the cylinder, see figure 15. It appears that weak and moderate magnetic
fields reduce the mean drag until the two-dimensional transition is reached at N ≈ 1.
Then the influence of the MHD pressure losses outweigh other contributions which
results in a rising drag coefficient. The RMS value of the lift coefficient is continuously
lowered by the action of a magnetic field and should vanish if the lift coefficient ceases
to oscillate.

7.5. Total damping of the vortex street

The present numerical results were compared with experiments by Frank et al. (2000).
The blockage ratio of the experiment was the same (10%) as in the present simulation.
All walls and the cylinder were insulating. In contrast to the numerical simulation
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Figure 16. Comparison of numerical result and experiment.

a circular cylinder was used in the experiment, so some differences between the
experiment and the numerics are expected. However, with the exception of what
is happening near the cylinder the action of the magnetic field on the vortices is
comparable in both cases.

As explained in § 7.2 for the comparison of MHD vortex damping, typical time
scales, e.g equation (7.6) can be used, especially when the aspect ratios of the vortices
produced are different. In the experiment an aspect ratio of α = a/l⊥ = 2.5 was used
whereas in the numerical simulation this ratio was 5. In figure 16 the experimental
and numerical results are compared. Due to the excessive consumption of CPU time
of this transient three-dimensional problem on a VPP300-16 supercomputer only
two Reynolds numbers could be investigated. The numerical simulation shows good
agreement with the experiment. The MHD damping needed to suppress the vortex
shedding is higher in the numerical simulation. This difference may be explained by
the influence of the square cylinder used in the numerical simulation instead of the
circular cylinder used in the experiment. Also the definition of the end of vortex
shedding shows some uncertainty. However, when taking into account on the one
hand the different experimental conditions and experimental uncertainties especially
end conditions and on the other hand side effects due to various numerical parameters
the agreement does seem to be satisfactory.
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A typical feature of quasi-two-dimensional inertial MHD flows, which can be clearly
seen in the experimental results in figure 16 is the fact that with increasing Reynolds
number the stability limit is increasingly controlled by the value of τ, see also e.g.
Bühler (1996). Due to limitations in computer resources it was not possible to reach
higher Reynolds numbers with the present three-dimensional numerical simulation to
validate this behaviour.

8. Weak inertial effects in quasi-two-dimensional MHD flows
As shown in § 7.2 the vortices aligned with the magnetic field are not strictly two-

dimensional but have a slight curvature along the direction of the magnetic field. This
curvature is also visible in the potential. In order to explain this effect asymptotic
methods are used. The result clearly shows a parabolic variation in the direction of
the magnetic field as outlined below. The analysis presented in this section is sufficient
to explain the results observed from the numerical simulation.

For our considerations we use the momentum equation (2.1) in the following form:

1

N

[
∂v

∂t
+ (v · ∇)v

]
= − 1

N
∇p+

1

M2
∆v + (j × ey), (8.1)

with

∇ · v = 0. (8.2)

The elimination of pressure by taking the curl of the momentum equation results in
an equation for the vorticity ω:

1

N

[
∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v

]
=

1

M2
∆ω + (ey · ∇)j . (8.3)

The boundary conditions are the no-slip condition for the velocity at the wall and the
thin-wall condition (4.2) which couples the potential at the wall with the wall-normal
currents.

8.1. Analysis

In terms of vorticity equation (2.5) for potential now reads

∇2Φ = ω · ey. (8.4)

Considering the y-component of Ohm’s law (2.4) it is possible to extract the derivative
of the current as it appears in equation (8.3):

∂jy

∂y
= −∂

2Φ

∂y2
= ∇2

⊥Φ− ωy. (8.5)

For many applications in MHD inertia effects are very small and can be neglected for
strong magnetic fields. However, minor inertia forces can also lead to the formation
of time-dependent flow patterns once the laminar flow loses its stability (see e.g.
Bühler 1996 or the present work). In the following analysis the inertia is therefore not
neglected but the influence is assumed to be weak. This assumption allows a small
parameter to be introduced

ε =
1

N
� 1, (8.6)

which is useful in an asymptotic expansion of the variables during the analytical
treatment of the problem.
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It is well known that for strong magnetic fields, when M � 1 the flow region splits
into distinct subregions. One is the core, where viscous effects are negligibly small.
Here the flow is mainly governed by a balance of Lorentz forces and pressure forces
and eventually small inertia forces. In the other subregions, namely the Hartmann
layers and the side layers, the flow is governed by a balance of Lorentz forces and
viscous forces. For the purpose of having a single small perturbation parameter that
allows one to balance inertia with part of the friction term it is convenient to replace
the inverse of the Hartmann number by another small quantity:

1

M
= εh. (8.7)

Assume that h = α/τHa does not vanish as ε → 0. The quantity τHa corresponds to
the Hartmann braking time (7.6) for the case of insulating walls. Since the walls are
assumed to be poorly conducting the wall conductance ratio is replaced by

c = εC. (8.8)

There are two reasons for using a single perturbation parameter ε. One is to keep the
analysis as simple as possible to explain the cigar-like shape of the vortices found in
the three-dimensional computations. The other reason is that for N �M all vortices
will disappear quickly by Hartmann braking so that the cigars are hardly observed.
For N � M Hartmann braking is small and so are the field-aligned currents that
create the cigar-like shape. Therefore the condition for which we can observe cigar
vortices is that M and N should be of the same order of magnitude. Such an analysis
is unable to study the effect of inertia on the Hartmann layers or the transition from
three-dimensional to quasi-two-dimensional flows but it explains the unexpected cigar
shape of vortices after the transition to a quasi-two-dimensional flow is completed. A
more detailed analysis appears in Pothérat, Sommeria & Moreau (2000).

Using these definitions the governing equations for the y-component of ω in the
magnetic field direction is determined by

ε

[
∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v

]
= (εh)2∆ω + ∆⊥Φ− ω, (8.9)

∆Φ = ω. (8.10)

For simplicity the subscript y has been dropped. Equation (8.10) is identical to
equation (8.4). In the following all variables are expanded in power series of the small
quantity ε as

v = v0 + εv1 + · · · , (8.11)

ω = ω0 + εω1 + · · · , (8.12)

Φ = Φ0 + εΦ1 + · · · . (8.13)

In the core of the flow the leading-order dependence of all fluid variables along the
magnetic field lines can be described analytically for many problems. Other important
fluid subregions are the Hartmann layers with thickness δ ∼ M−1. In the Hartmann
layers inertia and pressure forces are of minor importance. The velocity shows a
strong variation in the Hartmann layers, dropping from the core value to zero at
the wall. The pressure and the electric potential do not have this behaviour in the
Hartmann layer. As in Sommeria & Moreau (1982) we do not consider effects of
walls parallel to the magnetic field since they are passive in character if they are
insulated.
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Having in mind that most of the flow obeys inviscid rules, all variables are split
into parts that satisfy the equations for the inviscid problem, denoted by a subscript
c (core) and a viscous contribution that occurs within the viscous layers denoted by
the subscript h (Hartmann layers). The velocity and the vorticity component at the
expansion order k are expressed as

vk = vck(x, y, z, t) + vhk(x, η, z, t), (8.14)

ω = ωck(x, y, z, t) + ωhk(x, η, z, t), (8.15)

where

η = M(y − b) =
1

εh
(y − b) (8.16)

is the stretched Hartmann layer coordinate with the Hartmann wall at η = 0 (y = b)
and the core at η → −∞. It is known that the viscous correction for the electric
potential in the Hartmann layer is small, O(1/M2), see e.g. Moreau (1990). This is
taken into account by expanding the electric potential as follows:

Φk = Φck(x, y, z, t) + (εh)2 Φhk(x, η, z, t). (8.17)

Matching with the inviscid solution requires that the viscous corrections of all
variables vanish at large distances from the wall as η → −∞.

In the next step all variables are plugged into the y-component of the vorticity
equation (8.9) and into the potential equation (8.10). The terms are then collected at
equal orders of ε.

8.2. Leading-order approximation in ε for core variables

At the leading order in ε which determines the inertialess problem the following
equations determine the inviscid core solution.

The y-component of equations (8.9) and (8.10) becomes

∆⊥Φc0 − ωc0 = 0, (8.18)

∆Φc0 − ωc0 = 0. (8.19)

Equation (8.18) and (8.19) differ in

∂2Φc0

∂y2
= 0, (8.20)

which states that the potential has no variation in the direction of the magnetic
field. Equation (8.20) can be integrated twice. With the two-dimensional potential at
the Hartmann walls as integration function φ(x, z) = Φ(x, y = b, t, z) one finds for
y-symmetric problems for the y-component of the electric potential

Φc0 = φ0, (8.21)

showing that the potential is constant along magnetic field lines at the leading order
of approximation. Considering equations (8.10) and (8.20) the vorticity also must be
constant in the magnetic field direction at the leading order of approximation

ωc0 = Ω0. (8.22)

8.3. Leading-order approximation in ε for Hartmann layer variables

To complete the analysis for the inertialess problem consider the viscous corrections at
the leading order. The vorticity equation for viscous corrections leads to an ordinary
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differential equation

∂2ωh0

∂η2
− ωh0 = 0. (8.23)

The solution satisfying the matching condition with the core and the no-slip condition
at the wall is

ωh0 = −Ω0 exp (η). (8.24)

From equation (8.10) one finds for the viscous correction of potential the equation

∂2Φh0

∂η2
= ωh0. (8.25)

Integrating equation (8.25) leads to the following change of the wall-normal currents
due to viscous effects in the Hartmann layer according to Ohm’s law (2.4):

∂Φh0

∂η
(η = 0) =

∫ 0

−∞
ωh0 dη = −Ω0. (8.26)

8.4. Order ε for core variables

By combining the vorticity equation (8.9) and the potential equation (8.10) one finds
a relation that governs the inertial but inviscid contribution to the electric potential
in the core:

−∂
2Φc1

∂y2
=
∂ωc0

∂t
+ (vc0 · ∇)ωc0 + Dtωc0. (8.27)

Since at the leading order the flow is two-dimensional in the core, the right-hand
side of equation (8.27) is independent of the direction of the magnetic field. Knowing
this one finds immediately that the inertial correction to the electric potential has a
parabolic behaviour along magnetic field lines. The final solution is described by an
inertialess part independent of y plus a weak inertial correction described by equation
(8.27).

This result explains the present numerical solution for the inertial time-dependent
vortex shedding with an applied magnetic field. The curvature of the vortices obtained
in the present simulation is caused by the weak inertial correction which gives the
vortices their cigar-like shape (larger diameter at the centre, smaller diameter near
the Hartmann walls). The effect described by equation (8.27) is clearly visible in the
potential plot (figure 11b). Since the potential is related to the vorticity the effect is also
visible in the vorticity (figure 10). One should also recognize that the reduced intensity
of the vortices near the Hartmann walls is not created by higher viscous damping in
these regions but rather by the inertial contribution to the electric potential in the
core flow. Here a parabolic variation of potential along magnetic field lines is found
as a weak correction to a quasi-two-dimensional flow. A similar behaviour was found
for buoyant MHD flows at leading order of the analysis by Bühler (1998).

The decay of vorticity is determined by applying the thin-wall boundary condition
at the Hartmann wall. The electric boundary condition (4.1) involves the potential
gradient at the wall. The potential gradient is composed of an inertial and a viscous
part. By integration of equation (8.27) the inertial part is obtained:

−∂Φc1
∂z

(b) =

∫ b

0

(Dtωc0) dz + bDtωc0. (8.28)

The overbar denotes quantities averaged along magnetic field lines. The viscous part
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is obtained from equation (8.26). At the present order of approximation the thin-wall
condition results in

−hΩ0 − bDtωc0 = c∇2
⊥Φ0. (8.29)

It is possible to eliminate the potential with equation (8.22):

Dtωc0 = − 1

τ∗
ωc0 with τ∗ =

b

h+ c
, (8.30)

where τ∗ is the Hartmann braking time in the case of conducting walls. This equation
is equivalent to the quasi-two-dimensional approach of Bühler (1996) that has been
obtained by averaging the equations along magnetic field lines. The viscous term due
to transverse gradients in vorticity in that reference is not present here at this order of
approximation. With insulating walls equation (8.30) is in accordance with that given
by Verron & Sommeria (1986) describing the two-dimensional decay of vorticity.

9. Conclusions
The investigation of time-dependent MHD flows becomes important if an improve-

ment in the heat transfer is desired compared with inertialess flow. Additionally there
is great interest in the basic physical properties of two-dimensional turbulence which
can appear in such flows. Up to now numerical simulations of three-dimensional
time-dependent MHD flows have been scarce since the resolution of the thin Hart-
mann layers is a limiting issue. In the present work this limitation is overcome by
applying a model for the Hartmann layer.

The case of the three-dimensional inertial MHD flow around a square cylinder
with a magnetic field aligned with the cylinder was investigated. This first numerical
simulation of this case confirms previous experimental results and theoretical predic-
tions but also shows a surprising new result, namely that the vortices aligned with
the magnetic field are not strictly two-dimensional but have a cigar-like shape.

Using three-dimensional visualizations the physical mechanisms could be shown.
It should be noted that the hydrodynamic solution is also of some interest since
three-dimensional simulations for this case are rare.

The simulation of the hydrodynamic flow around a square cylinder shows several
properties also observed in the first three-dimensional simulations of Sohankar (1998).
In this simulation the spatial wake structure for the hydrodynamic case is additionally
shown at a Reynolds number of 200 and 250.

After the hydrodynamic flow had reached a fully developed state, the magnetic
field was switched on. In the present calculations a transition from a time-dependent
three-dimensional flow to a time-dependent quasi-two-dimensional flow occurred at
N & 1 which confirms the experimental findings of Kolesnikov & Tsinober (1972b).
The feature predicted by Sommeria & Moreau (1982) that the vortices have their
ends perpendicular to the Hartmann wall was also confirmed by three-dimensional
visualization. For the complete damping of the vortex street a good agreement with
the experiments of Frank et al. (1997) was achieved.

At interaction parameters above the values for the two-dimensional transition the
vortices have a curvature in the direction of the magnetic field, which is also visible
in the electric potential. This behaviour was explained by an asymptotic analysis.
It appears that the reduced intensity of the vortices near the Hartmann walls is
not created by higher viscous damping in these regions but rather by an inertial
contribution to the electric potential in the core flow.



MHD duct flows with obstacles 293

To understand the mechanisms of vortex damping the three-dimensional currents
in a channel flow with vortices were visualized. It appears that the current pattern for
a moving vortex can be seen as a superposition of the current patterns in an insulated
channel and those of a vortex between Hartmann walls.

The results of the present simulation show that a vortex street behind a cylindrical
insulated obstacle persists over a certain range of parameters under the influence of
a magnetic field. The vortex street acquires a state that is close to two-dimensional
before it is supressed completely. Such vortex patterns can be produced by several
methods and can exist at fusion-relevant parameters, see e.g. Bühler (1996). The
two-dimensional state of such vortices can enhance the heat transfer in MHD cooling
devices such as self-cooled liquid metal blankets for fusion reactors, see e.g. Burr et
al. (2000).

The authors would like to thank Professor A. Tsinober for intense discussions and
comments during the preparation of this work. This work has been performed in the
framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe.
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